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A new kind self-consistent GW (scGW) approximation
Self-consistency in charge density n
Not related to the LDA
Stay within Landau QP picture — sharp QP spectra

“Best possible” mean-field approximation —
excellent starting point for DMFT calculations

Apply to:
NiO, MnO
Many ZB semiconductors, ZB and others
Ni,Cu

Total energies? (Miyake)



Consider LDA bands of bulk GaAs.
Fundamental gap too small
(expt+SO=1.63 eV)
(LDA       =0.32 eV)
Ga d level too shallow
(expt =  -18.8 eV)
(LDA =  -15.0 eV)

Γ1c→ L1c , Γ1c→ X1c transitions too large
(expt = 0.48 eV; LDA = 0.97 eV)
Effective mass 3× too small
(expt = 0.067 m0; LDA= 0.022 m0)

Local minimum along (Γ→X) not at X!



GW approximation (Hedin, 1965)

GW Self-energy is

where
G is the one-particle Green’s function
W is the screened Coulomb interaction
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Implementations of GW differ in the following:
•Choice of basis for one-electron (usu. LDA) wave functions
•Choice of basis for screened Coulomb interaction W
•Treatment of core
•Use of plasmon-pole approximation
•Approximations to potential (e.g. PP; ASA; semilocal Σ)
•Self-consistency

Present work:

•LDA basis:  smoothed Hankels + local orbitals
•W expanded in IPW + product basis inside MT spheres
•Core treated on footing similar to valence (HF at lowest level)
•No plasmon-pole approximation
•Full-potential treatment (features in common w/ LAPW, PAW)
•New kind of self-consistency



LMTO Basis for All-Electron GW method
§Eigenstates expanded as generalized Linear Muffin-Tin 
Orbitals (both efficient and accurate). 

Standard LMTO basis:
envelopes → r -l as r→0
Solves S-eqn for flat V=VMTZ.
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Hankels:
envelopes
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§ Local orbitals can be included to augment linear combinations 
of     and     (linear method):
Extra orbitals                               can be chosen with A,B s.t. 
φz(rMT)=0 and φz’(rMT)=0
(no interstitial part)

φ φ�
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Energy bands accurate over a 
wide energy window.

Example : GaAs
Blue :  this method 

(Methfessel and van S.) 
Red:    old FP-LMTO method  

(Methfessel and van S.)
Green: QMTO-ASA 

(Andersen) — bands 
from 2nd gen. ASA V(r).
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§Very rapid
convergence wrt lmax
(like PAW)

Future:
Better 
envelope 
functions: 
screen; KE 
→continous at 
rMT (NMTO).

§Very weak dependence of Etot(LDA), QP levels εn on rMT



Basis sets for GW

Two independent basis sets are required.
Orbital basis Φ for wave functions.  Then 

Both basis functions Φi and eigenstates ψi
kn are expanded:

in augmented waves φ inside MT spheres
in  plane waves in the interstitial

ψi
kn and εn

k are found from solutions of the Schrodinger equation 
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Basis sets for GW, continued
§Basis for eigenfunctions (Consider 1st iteration only)

Eigenfunctions ψkn expanded in MTO’s χs
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For augmented-waves MTO’s χs are expanded by:
• local functions φRLi inside MT spheres, i=1..2 or 1..3

• IPW in the interstitial:

Then

Note: formalism applies equally to LAPW
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Basis sets for GW, continued

§For v,W we need

M = intermediate basis for expansion of products ψψ.
M: product basis B={φ×φ} inside MT spheres (Aryasetiawan)
Plane waves P×P→P in the interstitial (conventional methods)
Therefore:
A complete basis M for products ψψ is:

Now
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For a given potential and basis, make these quantities:

Eigenfunctions ψkn and eigenvalues εkn

Coulomb matrix 

Eigenfunction products

Now we can carry out GW cycle.  Make : ΣX , D, W, ΣC:

Exchange part ΣX of self-energy

Where the M must be orthogonalized
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Polarization function D

Important technical point:
Fast integration contour for D: (Faleev)
•Tetrahedron method ⇒ImD on real axis. 
•Hilbert transform to get ReD.

( ) 1( , ) 1IJW vD vω −= −qScreened Coulomb interaction:



Correlation part ΣC of self-energy
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+iδ for unoccupied states)

Standard integration contour for Σ:



GW starting from LDA (non self-consistent)
LDA LDA

x c( ) and     , , , ( )nn nn
n n D Wψ ε ω→ Σ Σk kr

Need diagonal part Σnn of Σ at QP energies Ekn.  

Actually make Σ at LDA εkn.  Correct by using Z factor.



Author  Ψ-rep W-rep material Approx- 
imations 

Aryasetiawan LAPW LAPW Ni Poor basis 

Aryasetiawan LMTO
(ASA) 

Product
basis 

d and f 
electrons 

ASA 

Zein, Antropov LMTO
(ASA) 

Product
basis 

d and f 
electrons 

ASA, semilocal 
No core, self-cons 

Hamada 
et. al. 

LAPW PW Si No core, 
Pl. pole 

Arnaud 
et al 

PAW PW semi- 
cond. 

No core, 
Pl. pole 

Present work 
 

smooth
LMTO

PW+ 
PB 

d el., semi,
insulators 

“self-cons” 

Ku et al LAPW PW Si, Ge Self-cons 
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“Conventional wisdom” for  QP levels from Σ=GLDAWLDA

(Wei Ku and A. Eguiluz, PRL 89, 126401 (2002))

Quasiparticle levels are accurate to ~0.1 eV 
Self-consistency “messes things up” 

Ergo, better to stick with GLDAWLDA

Noninteracting
GW

G0W0

Bandwidth of homogeneous 
electron gas widens relative to
noninteracting case–when it 
should narrow (Holm and von
Barth, PRB 57, 2108 (1998))

Si bandgap ~1.9 eV according 
to PP calculation: Schone and
Eguiluz, PRL 81, 1662 (1998)



Semiconductor  fundamental gaps, LDA vs GLDAWLDA

LDA GLDAWLDA

Conclusion: GLDAWLDA is dramatically better than LDA
Far from 0.1 eV accuracy
Gaps systematically too small.  InN gap is ~0!



Position of cation d levels move closer to experiment …
But shift is underestimated

GLDAWLDA

A slight k- dispersion to the gap error
(Γ–Γ error is slightly less than Γ–X error 



What about self-consistency?

True RPA self-consistency:  G, Σ satisfy Dyson’s equation

( )0 0 HG G G V G= + + Σ

In general Σ is non-hermitian and energy-dependent.
•Norm conserving in Baym-Kadanoff sense
•An internally consistent diagrammatic treatment

Drawbacks:
•Poles of G are not on the real axis
•If Σ = Σ(ω), G partitioned into a QP part and residual satellite part. 

•The QP part has energy-dependence Zi/(ω−ε i± iΓi)
•Loss of QP weight by Z (shifted to plasmon-like satellite)

•Particle-hole pair excitations P= −iG×G reduced by factor Zocc×Zunocc
•Result: W underscreened; also fails to satisfy f sum rule
•P and W lose physical interpretations: merely intermediate 
constructions during the scGW cycle.
•This construction not consistent with Landau's QP theory 



A self-consistency consistent with QP picture

We constrain the self-consistency as follows:

•Generate the full energy-dependent

•As input to the self-consistency cycle:
Discard the non-hermitian part of Σ
Replace by an energy-independent matrix

n refers to basis of 
eigenstates of 
generating 
hamiltonian.  Off-
diagonal parts also 
calculated 
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A self-consistency consistent with QP picture, cont’d
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In this construction:
• Poles of G are on the real axis − compatible with QP picture
• No loss of QP weight
• Mode 1 satisfies f sum rule; mode 2 better at simulating true energy-

dependence of Σ. Little difference in practice.
• Reasonable choice for “best possible” QP construction
• Not related to the LDA: only use LDA as a “starting guess”
Drawbacks:
• Not within the Baym-Kadanoff conserving approximation.
• Difference between present construction and the exact theory cannot 

be expressed as a set of diagrams.



scGW results for GaAs (representative semiconductor) 

•QP levels in excellent agreement with experiment
•Slight k dispersion in error:

Γ–Γ error ~0.15 eV;          Γ–X and Γ–L error <0.1eV
•Ga 3d level shifts to near experimental value (corrects GLDAWLDA)
•CB effective mass = 0.074 slightly larger than experiment (0.067)



Semiconductor trends, self-consistent GW results 
GLDAWLDA GW

Near universal:
Γ–Γ slightly overestimated
Γ–X and Γ–L within ~0.1eV of experiment



Compare to other GW Cation core levels 



scGW results for MnO

GLDAWLDA

gap

BIS
gap

GW

LDA

• GLDAWLDA gap ~1.6 eV (slight improvement on LDA)
• scGW gap =3.5 eV, close to experimental 3.9 ± 0.4 eV
• Conduction band dispersive s-like band
• Mn d levels shift up by ~6 eV.



scGW results for NiO

• GLDAWLDA: slight improvement on LDA
• scGW gap =4.8 eV, slightly larger than experiment ~4.3 eV
• eg state gets pushed down relative to LDA
• ARPES valence bands agree well with experiment
• EELS peaks, weights in excellent agreement with experiment



scGW results for Ni (preliminary)

d bands narrow from 4.4 eV (LDA) to 3.9? (scGW).  Expt ~3.2 eV

Magnetic moments MnO        NiO             Ni
LDA 4.48          1.28 0.63 
scGW 4.76          1.72 0.74
Experiment 4.6 1.9 0.57



Volume dependence of Total energy in Na, LW functional

skip



Conclusions
A new kind of self-consistent GW approximation was proposed.
Based on results so far, this scheme has been found to be an 
excellent predictor of many materials properties for weakly 
moderately correlated materials.
In semiconductors:

Γ–Γ excitation systematically slightly overestimated
A slight k-dependence of the gap error
Effective masses in very good agreement with experiment
Cation d levels     ” ” ” ” ” ”

scGW Ni bands narrow (not quite enough?)
“QP” scGW does a very good job in explaining many properties 
of MnO and NiO

ARPES spectra for valence band (NiO)
BIS spectra for conduction band and bandgap
Correct positions and weights for EELS (NiO)
Landau QP picture not so bad for MnO, NiO after all!
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